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DESPITE IMPROVEMENTS in resuscitation and support-
ive care, progressive organ dysfunction occurs in a large

proportion of patients with acute, life-threatening illnesses and
those undergoing major surgery.1-5 Recent data suggest that
early aggressive resuscitation of critically ill patients may limit
and/or reverse tissue hypoxia and progression to organ failure
and improve outcome.6 In a landmark study, Rivers et al7

showed that a protocol of early goal-directed therapy reduces
organ failure and improves survival in patients with severe sepsis
and septic shock. Similarly, optimization of cardiac output (CO) in
patients undergoing major surgery has been shown to reduce
postoperative complications and the length of stay.8-13 By contrast,
excessive fluid resuscitation has been associated with increased
complications, increased lengths of intensive care unit and hospital
stay, and increased mortality.14-17 These data suggest that fluid
resuscitation should be titrated closely to minimize the risks of
over- or under-resuscitation.18

Over the last 2 decades, the understanding of the complex-
ities of shock has improved, and conventional approaches to
resuscitation have come under increasing scrutiny. The tradi-
tional measured variables of resuscitation have included blood
pressure, pulse rate, central venous pressure, and arterial oxy-
gen saturation. These variables change minimally in early
shock and are poor indicators of the adequacy of resuscita-
tion.19 Furthermore, the clinical assessment of CO and intra-
vascular volume status are notoriously inaccurate.20 With the
increased recognition of the limitations of traditional methods
to guide resuscitation, newer techniques have emerged that
dynamically assess patients’ physiologic response to a hemo-
dynamic challenge.

In patients with indices of inadequate tissue perfusion,
fluid resuscitation generally is regarded as the first step in
resuscitation. However, clinical studies consistently have
shown that only about 50% of hemodynamically unstable
patients are volume responsive.14 Therefore, the resuscita-
ion of hemodynamically unstable patients requires an accu-
ate assessment of the patients’ intravascular volume status
cardiac preload) and the ability to predict the hemodynamic
esponse after a fluid challenge (volume responsiveness).
undamentally, the only reason to give a patient a fluid
hallenge is to increase the stroke volume (SV) (volume
esponsiveness). If the fluid challenge does not increase the
V, volume loading serves the patient no useful benefit and

s likely to be harmful. Therefore, the measurements of SV
nd CO are fundamental to the hemodynamic management

f critically ill and injured patients and unstable patients in

ournal of Cardiothoracic and Vascular Anesthesia, Vol xx, No x (Month),
he operating room. Both fluid challenges and the use of
notropic agents/vasopressors should be based on the re-
ponse of the SV to either of these challenges. Until re-
ently, continuous real-time CO monitoring required a ther-
odilution pulmonary artery catheter (PAC). During the

ast decade, several less invasive methods have been devel-
ped. These technologies are reviewed in this article.
Adolph Fick described the first method of CO estimation in

870.21 This method was the reference standard by which all
ther methods of determining CO were evaluated until the
ntroduction of the PAC in the 1970s.22 Despite its limitations,
O measurement with a PAC using the bolus thermodilution
ethod has become the de facto gold standard for the measure-
ent of CO and is the reference standard used to compare

oninvasive technologies.23,24 When assessing the reliability
nd clinical use of a noninvasive CO device, 2 factors are
mportant: the accuracy of individual measurements compared
ith the reference standard and the ability to track changes in

he SV and CO accurately and reproducibly after a therapeutic
ntervention. The latter is the most important factor when
valuating these devices because it directly impacts clinical
ecision making and therapeutic interventions. In most clinical
ituations, whether a cardiac index is 2.1 or 2.6 L/min/m2 is not

of great clinical importance; however, whether the change in
the SV after a fluid bolus is 5% or 15% is of great clinical
significance. The most frequently used analytic method for
evaluating CO monitoring devices is the Bland-Altman method
of plotting the bias against the mean CO and determining the
limits of agreement (LOAs).25 The percentage error is calcu-
lated as the ratio of 2 standard deviations (SDs) of the bias
(LOA) to the mean CO and is considered clinically acceptable
if it is below 30%, as proposed by Critchley and Critchley.23

The Bland-Altman method only addresses how well the method
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2 PAUL E. MARIK
being evaluated agrees with the reference method and fails to
show whether the test method reliably detects changes in CO.
Although the accuracy of noninvasive CO devices to measure
trends in CO has not been standardized, a number of methods
have been described in the literature, including the correlation
coefficient, the Bland-Altman method, the 4-quadrant plot, and
receiver-operator characteristic (ROC) curve analysis.24

CO AS MEASURED BY CARBON DIOXIDE REBREATHING

CO can be calculated by the CO2 partial rebreathing tech-
ique using the modified Fick equation.21 NICO (Respironics,
urraysville, PA) is a proprietary device that measures CO

ased on this principle. The CO2 partial rebreathing technique
ompares end-tidal carbon dioxide partial pressure obtained
uring a nonrebreathing period with that obtained during a
ubsequent rebreathing period. The ratio of the change in
nd-tidal carbon dioxide and CO2 elimination after a brief

period of partial rebreathing (usually 50 seconds) provides a
noninvasive estimate of the CO.26 A limitation of the rebreath-
ng CO2 CO method is that it only measures pulmonary capil-

lary blood flow (ie, the nonshunted portion of the CO). To
calculate the total CO, intrapulmonary shunt and anatomic
shunt factions (Qs/Qt) must be added to the pulmonary capil-
lary blood flow. The NICO system estimates Qs/Qt using a
shunt correction algorithm that uses oxygen saturation from
pulse oximetry and the fractional concentration of inspired
oxygen.

The CO2 rebreathing technique has a number of significant
limitations. Almost all the validation studies have been per-
formed in patients undergoing anesthesia or in deeply sedated
mechanically ventilated intensive care unit patients in whom
the agreement with thermodilution CO has varied from “poor”
to “acceptable.”27-32 In spontaneously breathing patients, the
ebreathing period is associated with an increase in minute
entilation.33 This reduces the accuracy of the CO determina-
ions.30,34 Furthermore, a low minute ventilation, high shunt
raction, and a high CO result in inaccurate measure-
ents.27,29,34 Considering the limitations of this technology and

he potential inaccuracies, the routine use of the CO2 rebreath-
ing technique to guide fluid and vasopressor therapy cannot be
recommended.

ESOPHAGEAL DOPPLER

The esophageal Doppler technique measures blood flow ve-
locity in the descending aorta by means of a Doppler transducer
(4-MHz continuous wave or 5-MHz pulsed wave according to
the manufacturers) placed at the tip of a flexible probe. The
probe is introduced into the esophagus of sedated, mechanically
ventilated patients and then rotated so the transducer faces the
descending aorta and a characteristic aortic velocity signal is
obtained. The CO is calculated based on the diameter of the
aorta (measured or estimated), the distribution of the CO to the
descending aorta, and the measured flow velocity of blood in
the aorta. Because esophageal Doppler probes are inserted
blindly, the resulting waveform is highly dependent on correct
positioning. The clinician must adjust the depth, rotate the
probe, and adjust the gain to obtain an optimal signal.35 Poor

positioning of the esophageal probe tends to underestimate the n
true CO. There is a significant learning curve in obtaining
adequate Doppler signals, and the correlations are better in
studies in which the investigator was not blinded to the results
of the CO obtained with a PAC.36 A major limitation of
esophageal Doppler monitoring is the assumption that a fixed
percentage of the CO is directed to the head and descending
aorta. Although this may be true in healthy volunteers, the
present authors have shown that a disproportionate percentage
of the increase in CO with fluid loading in hemodynamically
unstable patients is directed into the carotid arteries.37 There-
fore, the increase in blood flow velocity in the descending aorta
may not correlate well with the increase in the SV. Neverthe-
less, esophageal Doppler monitoring has use in aiding in the
assessment of the hemodynamic status and guiding fluid ther-
apy in the operating room.10-12,38

A completely noninvasive Doppler technology, the ultra-
sound CO monitor (USCOM, Sydney, Australia), uses
transaortic or transpulmonary Doppler ultrasound flow trac-
ings to calculate CO as the product of the SV and heart rate.
The SV is calculated from a proprietary algorithm applying
ultrasound principles of blood velocity–time integral (VTI)
measurements in the ventricular aortic/pulmonary outflow
tract. Studies comparing USCOM measurements of CO with
those obtained by the standard thermodilution technique
have shown mixed results.39-42 The use of Doppler ultra-
sound to determine the cardiac index has several inherent
technologic limitations. Potential sources of variation exist
in the estimation of the aortic/pulmonary outflow tract area,
the determination of the VTI, and the variability with oper-
ator-dependent measurements. With USCOM, the aortic/
pulmonary outflow tract area is not measured directly but
rather calculated from a proprietary anthropometric algo-
rithm based on the subject’s body height. The stroke dis-
tance is simply the distance a red blood cell travels per
systolic stroke. This is measured as the VTI of the Doppler
flow profile of each systolic stroke. Thus, the accuracy of the
USCOM technology depends on obtaining accurate, repro-
ducible VTI values. A precise VTI measurement requires a
good flow signal and its correct interpretation, both of which
are heavily dependent on the subject and the operator. An
improper technique of poor Doppler ultrasound beam align-
ment with blood flow at the aortic/pulmonary outflow tract
will lead to suboptimal VTI measurements. A further limi-
tation of this technique is that it is not conducive to contin-
uous monitoring.

PULSE CONTOUR ANALYSIS

The concept of pulse contour analysis is based on the relation
among blood pressure, SV, arterial compliance, and systemic
vascular resistance (SVR).43 The SV or CO can be calculated
rom the arterial pressure waveform if the arterial compliance
nd SVR are known. Although the 4 pulse contour systems that
re available commercially use different pressure-volume con-
ersion algorithms, they are based on this basic principle.
hese systems can be divided into 3 categories: (1) pulse
ontour analysis requiring an indicator dilution CO measure-
ent to calibrate the pulse contour (ie, LiDCO System;
iDCO, Cambridge, UK; and PiCCO System; Pulsion, Mu-

ich, Germany), (2) pulse contour analysis requiring patient
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3NONINVASIVE CARDIAC OUTPUT MONITORS
demographic and physical characteristics for arterial imped-
ance estimation (ie, FloTrac System; Edwards Lifesciences,
Irvine, CA), and (3) pulse contour analysis that does not require
calibration or preloaded data (ie, MostCare System; Vyetech
Health, Padua, Italy). Table 1 contrasts the characteristics of the
4 systems. In addition to measuring the SV, these systems
report the SV variation (SVV) and/or pulse pressure variation
(PPV). The SVV/PPV may be useful in predicting fluid respon-
siveness in select patient groups (see later).

An important factor when interpreting the CO measured by
a pulse contour system is the site that the blood pressure is
measured (ie, the radial v the femoral artery). Discrepancies
among central and peripheral blood pressures have been de-
scribed in a number of clinical circumstances, such as after
cardiopulmonary bypass, in patients with septic shock treated
with high-dose vasoconstrictors, and in patients during reper-
fusion after a liver transplant.44 The differences in blood pres-
sure among different sites may be large, and in conditions of
intense vasoconstriction, the radial blood pressure may under-
estimate the true aortic blood pressure, giving a falsely low CO
value. Furthermore, it has been shown that in volume-respon-
sive patients there is selective redistribution of blood flow to
the cerebral circulation with a significantly smaller percentage
increase in blood flow in the brachial artery.37 This may lead to
a significant error when the radial pulse is used for pulse
contour analysis.

Lithium Dilution and Pulse Contour Analysis

The LiDCO system combines pulse contour analysis with
lithium indicator dilution for continuous SV and SVV moni-
toring. The arterial pressure waveform is interpreted as a con-
tinuous curve describing the volume of the arterial tree in
arbitrary units (standardized volume waveform). The effective
value (approximately 0.7 times the original amplitude) of this

Table 1. Overview of the Pulse Contou

System Characteristic FloTrac System PiCCO

Arterial waveform
analysis

SD of 2000 arterial
waveform points

Area under the s
the arterial wa

Requirements Peripheral or central
arterial catheter

Central arterial ca
subclavian or I

Calibration Uncalibrated/internal Transpulmonary

Recalibration Automatically
Indicator None Saline
Additional parameters SVV
Advantages Minimally invasive

Operator independent
Easy to use

Broad range of h
parameters

More robust duri
instability

Disadvantages Inaccurate especially in
vasoplegic patients

More invasive

Does not accurately
track changes in SV

Adapted with permission.43

Abbreviations: CVC, central venous catheter; GEDV, global end-dia
root mean square.
volume waveform is determined using the root mean square, a u
mathematic principle to calculate the magnitude of a varying
quantity. The root mean square value is called “nominal SV”
and is scaled to an “actual SV” using a patient-specific cali-
bration factor.43 This factor is derived from a lithium indicator
dilution CO measurement and corrects for arterial compliance
and variations among individuals. The lithium can be injected
into a peripheral vein, and the doses do not exert pharmaco-
logically relevant effects in adult patients. The LiDCO indica-
tor dilution method has shown to be at least as reliable as other
thermodilution methods over a broad range of CO in a variety
of patients.45-48 Recalibration should be performed after acute
emodynamic changes and after any intervention that alters
ascular impedance.

ranspulmonary Thermodilution and Pulse
ontour Analysis

The PiCCO monitoring system combines pulse contour anal-
sis with the transpulmonary thermodilution CO (TPCO) to
etermine a number of hemodynamic parameters. The TPCO
equires both central venous (internal jugular or subclavian)
nd central arterial (femoral artery) catheterization. TPCO mea-
urements with PiCCO have been shown to be reliable in
omparison with PAC thermodilution in broad groups of pa-
ients.49,50 The continuous pulse contour SV is calculated from
he area under the systolic portion of the arterial waveform. In
ddition, the shape of the arterial waveform (dP/dt), arterial
ompliance, SVR, and a patient-specific calibration factor are
equired for the calculation.43,49 Arterial compliance is derived

from the SVR and the shape of the diastolic part of the arterial
waveform. The PiCCO monitor uses TPCO measurement for
calibration of the algorithm. The PiCCO calibration appears to
remain accurate within 6 hours of calibration even when the
vascular tone has changed.51 In addition, the thermodilution
urve can be used to measure the global end-diastolic vol-

d Hemodynamic Monitoring Devices43

LiDCO System PRAM

c portion of RMS method applied to the
arterial pressure signal

Area under curve

r and Peripheral or central arterial
catheter

Peripheral or central
arterial catheter

odilution Lithium indicator dilution Uncalibrated/internal
Manual Automatic
Manual
Lithium None
SVV, PPV, GEDV, EVLW, SVR SVV, PPV

ynamic

modynamic

Minimally invasive
More robust during

hemodynamic instability

Minimally invasive

Requires lithium Few validation
studies

volume; EVLW, extravascular lung water; IJ, internal jugular; RMS,
r-Base

System

ystoli
veform
thete

J CVC
therm

emod

ng he

stolic
me and extravascular lung water, a marker of pulmonary
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4 PAUL E. MARIK
edema.49,52-54 The monitor also measures SVV/PVV, which has
een shown to be predictive of fluid responsiveness.55 In a

randomized controlled trial, Mutoh et al56 showed an improved
linical outcome for patients with subarachnoid hemorrhage
andomized to a PiCCO-based hemodynamic algorithm as
ompared with the “standard of care,” which used a PAC
lgorithm. Additional studies are required to evaluate the clin-
cal benefit of this technology.

ulse Contour Requiring Patient Demographic and
hysical Characteristics and No Calibration

The FloTrac system consists of the FloTrac sensor and
orresponding Vigileo monitor. The system is operator inde-
endent, needs no external calibration, and requires a periph-
ral arterial catheter only. The basic principle of the system is
he linear relation between the pulse pressure and the SV. The
V is estimated using the following equation43: SV � SDAP �

�. The arterial pressure waveform is sampled each 20 seconds
t 100 Hz, which results in 2,000 data points. SDAP is the
tandard deviation of these data points and reflects the pulse
ressure. The factor � represents the conversion factor that
epends on arterial compliance, the mean arterial pressure, and
aveform characteristics. The patient’s vascular compliance is

ssessed using biometric values (ie, sex, age, height, and
eight) according to the method described by Langewouters et

l.57 Waveform characteristics assessed are skewness (degree
f asymmetry) and kurtosis (degree of peakedness) of the
ndividual arterial pressure curve. Skewness and kurtosis rep-
esent changes in the arterial waveform, which should reflect
hanges in vascular tone. The factor � is recalculated every

minute and enables calculation of the SV without external
calibration.

Because the system is operator independent, easy to use,
needs no external calibration, and only requires a peripheral
arterial catheter (usually the radial artery), the FloTrac system
has found popular appeal and has been studied widely, partic-
ularly in the setting of cardiac surgery. To date, the accuracy of
FloTrac has been evaluated in 45 studies58-102; these are sum-
marized in Table 2. Studies evaluating the first-generation
FloTrac showed poor agreement compared with intermittent
thermodilution, which is the gold standard. Second-generation
devices were purported to be more reliable; however, their
accuracy remained clinically unacceptable. Furthermore, in pa-
tients with low SVR (eg, sepsis or liver failure), measurements
were unreliable, with the bias being correlated with the
SVR.65,95,99,101 The data from Table 2 show that the percentage
error is lower in cardiac patients as compared with other
cohorts (37% � 11% v 47% � 11%, p � 0.01). The third-
eneration software claims to have overcome these problems.
owever, 6 recent validation studies evaluating this latest ver-

ion do not show improved accuracy in comparison with older
ersions.97-102 More problematic is the fact that the system does
ot track changes in the SV accurately after a volume challenge
r after the use of vasopressors.65,79,85,94,95,100,101,103 These lim-

itations significantly restrict the clinical use of this device.
The SVV may be useful in intraoperative fluid optimization
in select noncardiac surgical patients.104 However, in a co-
ort of medical patients, it was reported that the SVV was d
oorly predictive of volume responsiveness.105 Takala et
l106 randomized 388 hemodynamically unstable patients to
oninvasive monitoring with the FloTrac system for 24
ours or usual care (the control group). The main outcome
easure was the proportion of patients achieving hemody-

amic stability within 6 hours of starting the study. Surpris-
ngly, the time to reach the predefined resuscitation goals
as longer in the FloTrac group, with worse clinical out-

omes in these patients.

ulse Contour Requiring No Patient Data and
o Calibration

The MostCare system uses the pressure recording analytic
ethod (PRAM) to determine the SV.107 PRAM measures the

area under the curve of the arterial waveform. No external
calibration or pre-estimated data are required. The morphology
of the arterial waveform is analyzed to determine an internal
calibration. This system uses high-time resolution by sampling
the signal at 1,000 Hz, and it analyzes the whole cardiac cycle.
The area under the pressure wave (P/t) is determined during the
whole cardiac cycle. The PRAM methodology analyzes the
pressure wave morphology and, in real time, identifies the
diastolic phase from the dicrotic notch determination. The P/t is
then divided into contributions from the diastolic phase and the
systolic phase, with 2 impedances based on different charac-
teristics. There are limited studies that have evaluated the
accuracy of this system, with those published by the patent
holder’s group showing good results,107-112 whereas indepen-
ent studies have shown mixed results.113-115

Comparative Studies of the Pulse Contour Systems

A number of studies have been performed comparing the
accuracy of the 3 major pulse contour systems (none has
compared the MostCare system). Unfortunately, many of these
studies suffer methodologic problems in terms of the gold
standard used (thermodilution) and the sample size. Hadian et
al94 performed a cross-comparison of the CO and trending
ccuracy of the LiDCO, PiCCO, and FloTrac systems com-
ared with intermittent PAC thermodilution.94 In this study, the
erformances of the PiCCO and LiDCO systems were adequate
nd comparable, whereas that of the FloTrac system was sub-
ptimal. Monnet et al65 compared the changes in pulse contour–

derived CO induced by a fluid challenge or norepinephrine in
patients undergoing monitoring with the PiCCO or FloTrac
systems. Although the PiCCO system accurately tracked the
changes in volume- and norepinephrine-induced cardiac index
(the area under the ROC curves � 0.878 and 0.924, respec-
tively), the FloTrac system was less reliable (the area under the
ROC curves � 0.564 and 0.541, respectively).

Pulse Contour Analysis and Dynamic Preload Indices

A number of studies, mainly those performed in a con-
trolled setting in the operating room, have shown that the
PPV derived from the analysis of the arterial waveform and
the SVV derived from pulse contour analysis are predictive
of fluid responsiveness.55 The principles underlying this
echnique are based on the physiologic changes that occur

uring positive-pressure ventilation.116 Intermittent positive-
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pressure ventilation induces cyclic changes in the loading
conditions of the left and right ventricles. Mechanical insuf-
flation decreases the preload and increases the afterload of
the right ventricle. The reduction in the right ventricular
preload and the increase in the right ventricular afterload
both lead to a decrease in right ventricular stroke volume,
which is at a minimum at the end of the inspiratory period.
The inspiratory reduction in right ventricular ejection leads

Table 2. Accuracy of t

Author Year Version Setting Referenc

Chakravarthy54 2007 1.01 Cardiac
De Waal55 2007 1.01 Cardiac
Manecke56 2007 1.01 Cardiac
McGee57 2007 1.01 Various-ICU
Zimmerman58 2008 1.01 Cardiac
Marque59 2009 1.01 Cardiac
Ostergaard60 2009 1.01 Cardiac
Monnet61 2010 1.01 Sepsis-ICU
Opdam62 2006 1.03 Cardiac
Sander63 2006 1.03 Cardiac
Breukers 64 2007 1.03 Cardiac
Mayer65 2007 1.03 Cardiac
Sander66 2008 1.03 Cardiac
Cecconi67 2010 1.03 Various-ICU
Button68 2007 1.07 Cardiac
Cannesson69 2007 1.07 Cardiac
Sakka70 2007 1.07 Sepsis-ICU
Mehta71 2008 1.07 Cardiac
Staier 72 2008 1.07 Cardiac
Compton73 2008 1.07 Various-ICU
Bias74 2008 1.07 OTLTx
Eleftheriadis75 2009 1.07 Cardiac
Ham76 2010 1.07 Cardiac
Hofer77 2010 1.07 Cardiac
Jo78 2010 1.07 Cardiac
Slagt79 2010 1.07 Sepsis-ICU
Junttila80 2011 1.07 ICH-ICU
Haenggi 81 2011 1.07 Post-CA
Saraceni 82 2011 1.07 Various-ICU
Vetrugno83 2011 1.07 Cardiac
Prasser84 2007 1.1 Cardiac
Della Rocca 85 2008 1.1 OTLTx
Mayer86 2008 1.1 Cardiac
Senn87 2009 1.1 Cardiac
Biancofiore88 2009 1.1 OTLTx
Zimmerman89 2009 1.1 Cardiac
Hadian90 2010 1.1 Cardiac
Krejci91 2010 1.1 OTLTx
Slagt79 2010 1.1 Sepsis-ICU
Mutoh92 2009 1.1 SAH-ICU
Biancofiore93 2011 3.02 OTLtx
De Backer94 2011 3.02 Sepsis-ICU
Metzelder 95 2011 3.02 SAH-ICU
Phan96 2011 3.02 Cardiac
Monnett97 2012 3.02 Various-ICU
Su98 2012 3.02 OTLx

Abbreviations: PiCCO, transpulmonary thermodilution; Post-CA, p
emorrhage; SAH, subarachnoid hemorrhage; PAC-CCO, pulmonary
*Percentage error calculated form data reported in the study.
to a decrease in left ventricular filling after a phase lag of 2 P
r 3 heartbeats. Thus, the left ventricular preload reduction
ay induce a decrease in the left ventricular SV, which is at

ts minimum during the expiratory period. The cyclic
hanges in the right ventricular and left ventricular SV are
reater when the ventricles operate on the steep rather than
he flat portion of the Frank-Starling curve. Therefore, the
agnitude of the respiratory changes in the left ventricular
V is an indicator of biventricular preload dependence. A

Trac/Vigileo System

hod Data Points Bias LOA21 % Error19

AC 438 0.15 0.66 13
AC 184 0 — 33*
AC 295 0.55 1.96 39*
AC 561 0.2 2.38 43
AC 192 0.1 2.90 48*
AC-CCO 33 �0.1 1.68 31*
AC 50 �0.5 1.87 48
iCCO 160 �0.2 5.4 61
AC 218 0 2.28 45*
AC 108 0.6 2.80 54
AC 56 �0.14 2.00 31
AC 244 0.46 1.15 46
AC 84 0.1 2.20 46*
AC 203 �1.1 3.70 55
AC 150 0.25 2.27 54
AC 166 �0.26 1.74 38
iCCO 72 0.5 4.60 68
AC 96 �0.27 0.44 29
AC 120 0 1.42 36
iCCO 324 0.68 1.94 59
AC 400 0.8 2.70 43
AC 96 0.4 1.70 34
AC-CCO 6492 �0.1 4.40 46
AC 156 0.2 2.10 42*
AC 250 �0.07 0.67 26
AC 86 �1.6 3.20 48
AC 407 1.5 3.90 58
AC 395 0.23 1.28 34
AC 141 �0.18 4.72 67*
AC 360 �0.5 1.70 37
AC 158 0.01 1.63 26
AC 126 0.95 2.82 26
AC 282 0.19 0.60 24
iCCO 200 �0.15 1.60 29
AC 290 1.3 2.80 54
AC 138 0.04 2.13 42*
AC 110 0.43 3.37 59
AC 97 �1.78 2.78 69
AC 73 �1.2 2.30 32
iCCO 179 0.57 1.00 25
AC 200 0.38 2.33 52
AC 401 0 2.20 30
iCCO 158 0.9 2.50 30
AC 44-0.21 1.13 47
iCCO 60 0.5 3.7 54
AC 3234 �0.8 4.8 75

cardiac arrest; OTLx, orthotopic liver transplant; ICH, intracerebral
y catheter continuous cardiac output; ICU, intensive care unit.
he Flo
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PV/SVV of greater than 12% to 13% has been reported to
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6 PAUL E. MARIK
be predictive of volume responsiveness.55 It should be noted
hat in this systematic review, the predictive area under the
OC curve for the PPV was significantly greater than that

or the SVV (p � 0.001).55 This may be related to the fact
that a number of assumptions are made in the calculation of
the SV (by pulse contour analysis). However, the PPV
usually is measured directly from the arterial pressure trac-
ing using advanced digital software. This suggests that the
PPV may be the preferred arterial waveform– derived vari-
able when dynamic indices are used for hemodynamic mon-
itoring. This finding is supported by the study of Renner et
al117 in pediatric patients undergoing cardiac surgery in
whom the PPV was highly predictive of fluid responsive-
ness, whereas the SVV, the central venous pressure, and the
global end-diastolic volume index could not distinguish be-
tween fluid responders and nonresponders. The SVV/PPV
measured by the LiDCO system has been shown to be
accurate for the assessment of fluid responsiveness.55,118,119

In a randomized controlled trial by Pearse et al,120 a signif-
icant reduction in complications and a median stay in the
hospital were reported in high-risk surgical patients treated
with LiDCO-based goal-directed therapy.

Cannesson et al121 studied the PPV in 413 patients during
eneral anesthesia and mechanical ventilation using the “gray
one” approach. They identified a range of PPV values between
% and 13% for which fluid responsiveness could not be
redicted accurately. Numerous factors hinder the accuracy of
PV monitoring, most notably ventilator-patient dyssynchrony,
rrhythmia (particularly atrial fibrillation), low-tidal-volume
entilation, altered chest wall and pulmonary compliance, pul-
onary hypertension, and increased intra-abdominal pres-

ure.122-126 In routine clinical practice both in the operating
oom and the intensive care unit, dynamic preload indices may
e poor predictors of volume responsiveness.37,127

THORACIC BIOIMPEDANCE

Standard bioimpedance systems apply a high-frequency electric
current of known amplitude and frequency across the thorax and
measure changes in voltage (amplitude of the returning signal
compared with the injected signal). The ratio between voltage and
current amplitudes is a measure of transthoracic direct current
resistance (more generically referred to as impedance [Zo]), and
this varies in proportion to the amount of fluid in the thorax. The
instantaneous rate of the change of Zo is believed to be related to
the instantaneous blood flow in the aorta. Therefore, the SV is
proportional to the product of maximal rate of the change of Zo
(dZo/dtmax) and ventricular ejection time (VET). Early studies
showed a poor agreement between thoracic electrical bioimped-
ance (TEB) and thermodilution CO.128-130 In addition, the accu-
racy of TEB worsened as the degree of volume overload in-
creased.131 Newer-generation devices using upgraded computer
technology and refined algorithms to calculate CO have produced
improved results.132-134 However, a poor correlation between
TEB-derived CO and that determined by thermodilution in the
setting of a cardiac catheterization laboratory was reported.130 In
the Bioimpedance CardioGraphy (BIG) substudy of the ESCAPE
heart failure study, there was a poor agreement among TEB and
invasively measured hemodynamic profiles.135 Bioimpedance has

een found to be inaccurate in the intensive care unit and other
ettings in which significant electric noise and body motion exist
nd in patients with increased lung water.131,136,137 Furthermore,
his technique is sensitive to the placement of the electrodes on the
ody, variations in patient body size, and other physical factors
hat impact on electric conductivity between the electrodes and the
kin (eg, temperature and humidity).130,138

BIOREACTANCE

Because of the limitations of bioimpedance devices,
newer methods of processing the impedance signal have
been developed. The most promising technology to reach the
marketplace is the NICOM device (Cheetah Medical, Port-
land, OR), which measures the bioreactance or the phase
shift in voltage across the thorax. The human thorax can be
described as an electric circuit with a resistor (R) and a
capacitor (C), which together create the thoracic impedance
(Zo). The values of R and C determine the 2 components of
impedance, which are (1) amplitude (a), the magnitude of
the impedance (measured in ohms); and (2) phase (phi), the
direction of the impedance (measured in degrees). The pul-
satile ejection of blood from the heart modifies the value of
R and the value of C, leading to instantaneous changes in the
amplitude and the phase of Zo. Phase shifts can occur only
because of pulsatile flow. The overwhelming majority of
thoracic pulsatile flow stems from the aorta. Therefore, the
NICOM signal is correlated almost wholly with aortic flow.
Furthermore, because the underlying level of thoracic fluid
is relatively static, neither the underlying levels of thoracic
fluids nor their changes induce any phase shifts and do not
contribute to the NICOM signal. The NICOM monitor con-
tains a highly sensitive phase detector that continuously
captures thoracic phase shifts, which together result in the
NICOM signal (Fig 1).

Unlike many of the other devices reviewed in this article,
NICOM is totally noninvasive. This system consists of a
high-frequency (75 kHz) sine wave generator and 4 dual-
electrode “stickers” that are used to establish electric contact
with the body (Fig 2).139 Within each sticker, 1 electrode is

sed by the high-frequency current generator to inject the
igh-frequency sine wave into the body, whereas the other
lectrode is used by the voltage input amplifier. Two stickers
re placed on the right side of the body, and 2 stickers are
laced on the left side of the body. The stickers on a given
ide of the body are paired, so the currents are passed
etween the outer electrodes of the pair, and voltages are
ecorded from between the inner electrodes. Thus, a nonin-
asive CO measurement signal is determined separately
rom each side of the body, and the final noninvasive CO
easurement signal is obtained by averaging these 2 signals.
he system’s signal processing unit determines the relative
hase shift (��) between the input and output signals. The
eak rate of change of � (d�/dtmax) is proportional to the

peak aortic flow during each beat. The SV is calculated from
the following formula: SV � C � VET � d�/dtmax, where
C is a constant of proportionality and VET is determined
from the NICOM and electrocardiographic signals. Unlike
bioimpedance, bioreactance-based CO measurements do not
use the static impedance (Zo) and do not depend on the

distance between the electrodes for the calculations of SV,
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7NONINVASIVE CARDIAC OUTPUT MONITORS
both factors that reduce the reliability of the result.139

NICOM averages the signal over 1 minute, therefore allow-
ing “accurate” determination of CO in patients with arrhyth-
mias.

The CO as measured by bioreactance has been shown to
be highly correlated with that measured by thermodilution
and pulse contour analysis.139-144 Squarra et al143 compared
he NICOM system with PAC-derived CO in 110 patients
fter cardiac surgery. The reported bias was �0.16 L/min;
he LOA was �1.04 L/min with a relative error of 9%. The
recision of the NICOM system was better than that of
hermodilution, with the device being able to track changes
n CO accurately. In a study of 3 intensive care units (70
atients), Raval et al140 reported a bias of �0.09 L/min and

an LOA of �2.4 L/min, with the NICOM system closely
tracking changes in the thermodilution CO. Rich et al142

Fig 1. Pulsatile changes in thoracic volume induce phase shifts th

and captured in the form of the NICOM signal. (Color version of figu

Fig 2. The NICOM system and its connection to the body. Four d

current is passed between the 2 outer electrodes, and the resulting

shift (�) and rate of change of phase (d�/dt) between these signals a
Reproduced with permission from the American Physiological Society.139
performed right-heart catheterization in 24 patients with
pulmonary hypertension. Simultaneous CO measurements
were performed using thermodilution, NICOM, and the Fick
methods at baseline and after adenosine vasodilator chal-
lenge. CO measured by the NICOM system was significantly
more precise than that of thermodilution (3.6% � 1.7% v
9.9% � 5.7%, p � 0.001). Bland-Altman analyses revealed

mean bias and LOA of �0.37 � 2.6 L/min and 0.21 � 2.3
/min, respectively. The adenosine challenge resulted in a
imilar mean increase in CO with each method. The accu-
acy of NICOM was assessed in hemodynamically unstable
ntensive care unit patients and healthy volunteers after
assive leg raising (PLR) and fluid challenges (intensive
are unit patients) using carotid and brachial arterial Doppler
ltrasound flow (mL/min) as the reference technique. In a
revious study,37 almost 100% concordance was found be-

detected continuously by the NICOM’s phase-detection mechanism

available online.)

-electrode stickers are placed around the thorax. A high-frequency

es are recorded between the 2 inner electrodes. The relative phase

termined and used in the calculations of the SV. RF, radiofrequency.
ouble

voltag

re de
) (Color version of figure is available online.)
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8 PAUL E. MARIK
tween fluid responsiveness as determined by carotid flow
and the NICOM system.37 Benomar et al145 showed that the

ICOM system could predict fluid responsiveness accu-
ately from changes in CO during PLR. As part of goal-
irected perioperative therapy in patients undergoing major
urgery, Waldron et al146 compared fluid responsiveness
ith an esophageal Doppler monitor and the NICOM sys-

em. Notwithstanding the limitations of esophageal Doppler
onitoring (as discussed previously), there was a good

greement between these technologies. In this study, hemo-
ynamic variables were not displayed by the esophageal
oppler monitor for 7.8% measurements as compared with
.7% for the NICOM monitor.

Fig 3. (A) The protocol for early goal-directed resuscitation of pa

operating room.
It should be noted that electrocautery interferes with the a
ICOM signal. However, as long as the device receives a
ingle for at least 20 seconds within a minute, the CO can be
etermined. When electrocautery is on for more than 40
econds in a given minute, the CO for that minute is not
isplayed. NICOM assessment of the CO can be performed
n ventilated and nonventilated patients alike; can compute
he CO in patients with atrial and ventricular arrhythmias; is
ery easy to set up with a high degree of acceptability by
ursing staff; and can be performed seamlessly in the emer-
ency room, intensive care unit, and operating room. Addi-
ional studies with this device are required to confirm the
ccuracy, reliability, and versatility with this device and to
how improved patient outcomes. Figure 3A and B are

with sepsis. (B) The protocol for hemodynamic optimization in the
tients
lgorithms using the NICOM monitor that were developed
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for the hemodynamic management of septic patients and
those in the operating room.

ECHOCARDIOGRAPHY

Although echocardiography traditionally is not considered
a monitoring device, both transthoracic and transesophageal
echocardiography provide invaluable information on both
left and right ventricular function, which is crucial in the
management of hemodynamically unstable patients.147,148 In

Fig 3.
ddition, a number of dynamic echocardiographic parame-
ers that are based on changes in venacaval dimensions or
ardiac function induced by positive-pressure ventilation or
LR appear to be highly predictive of volume responsive-
ess.147

CONCLUSIONS

Although no device is perfect, a number of noninvasive
methods to determine the CO in a broad range of patients and
settings are now available. The major use of these devices is to

nt’d)
optimize fluid resuscitation by determining the patients’ re-
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10 PAUL E. MARIK
sponse to a PLR maneuver or a fluid challenge. It is important
to stress that there are very little data showing that any of these
monitoring devices improve patient outcome. In reality, out-
comes are changed by the correct interpretation of the data that

monitors provide and then instituting the appropriate therapeu- i

REN

vidence. Acta Anaesthesiol Scand 53:843-851, 2009
ic intervention(s). Furthermore, physicians should not blindly
ollow algorithms and bundles but rather should embrace the
atient’s clinical, hemodynamic, laboratory, and radiographic
ata to chart a course based on the integration and correct

nterpretation of these data.
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