Use of Central Venous Oxygen Saturation to Guide Therapy

Keith R. Walley

Critical Care Research Laboratories, Heart and Lung Institute at St. Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada

The use of pulmonary artery catheters has diminished, so that other technologies are emerging. Central venous oxygen saturation measurement (ScvO₂) as a surrogate for mixed venous oxygen saturation measurement (SvO₂) is simple and clinically accessible. To maximize the clinical utility of ScvO₂ (or SvO₂) measurement, it is useful to review what the measurement means in a physiologic context, how the measurement is made, important limitations, and how this measurement may be helpful in common clinical scenarios. Compared with cardiac output measurement, SvO₂ is more directly related to tissue oxygenation. Furthermore, when tissue oxygenation is a clinical concern, SvO₂ is less prone to error compared with cardiac output, where small measurement errors may lead to larger errors in interpreting adequacy of oxygen delivery. ScvO₂ should be measured from the tip of a central venous catheter placed close to, or within, the right atrium to reduce measurement error. Correct clinical interpretation of SvO₂, or its properly measured ScvO₂, surrogate, can be used to estimate cardiac output using the Fick equation, better understand whether a patient’s oxygen delivery is adequate to meet their oxygen demands, help guide clinical practice, particularly when resuscitating patients using validated early goal directed therapy treatment protocols, understand and treat arterial hypoxemia, and rapidly estimate shunt fraction (venous admixture).

Keywords: early goal directed therapy; cardiac output; Fick equation; shunt fraction; oxygen extraction ratio

Several studies assessing pulmonary artery catheter use failed to demonstrate benefit (1–3). Consequently, the use of pulmonary artery catheters to monitor critically ill patients and to guide therapy has diminished substantially (4). Some have suggested that the problem was not so much with the pulmonary artery catheter as with inadequate knowledge and interpretation (5). To fulfill the perceived clinical need for similar measurements a number of new technologies have emerged, including echocardiography (6), ultrasonic cardiac output monitors (7), arterial pulse pressure analysis techniques (8, 9), impedance techniques (10, 11), alternative dye dilution techniques (12), and so on, to provide alternative/additional measurements. In the absence of clinical trials analogous to those for pulmonary artery catheters, we do not know if these alternative/additional measurements are beneficial (13). To avoid a repeat of the pulmonary artery catheter story, it is important to maximize our knowledge of alternative/additional approaches so that we measure and interpret arising parameters in a way that maximizes clinical utility.

One remarkably simple alternative/additional measurement for which there is some evidence of clinical utility (14–17) is the measurement of central venous oxygen saturation (ScvO₂)—a surrogate measure of mixed venous oxygen saturation (SvO₂). Further evaluation is underway (18–20). To maximize the clinical utility of ScvO₂ (or SvO₂) measurement, it is useful to review what the measurement means in a physiologic context, how the measurement is made, important limitations, and how this measurement may be helpful in common clinical scenarios.

FIRST, DO WE NEED TO KNOW CARDIAC OUTPUT?

Adequate tissue oxygenation is essential for normal organ function. The amount of oxygen delivered to the tissues is flow (cardiac output in L blood/min) multiplied by oxygen-carrying capacity (mL O₂/L blood). Thus, cardiac output is important, but is not the only factor in determining adequacy of tissue oxygenation. Metabolic demand, hemoglobin concentration, and body size are three highly variable parameters that dramatically alter the “critical cardiac output” from minute to minute, over time in the same patient, and between patients, respectively. Adequacy of tissue oxygenation is, instead, determined by the balance between oxygen delivered to tissues (Do₂) and oxygen consumption by the tissues (Vo₂). This balance is reflected by the fraction of delivered oxygen that the tissues consume (ERo₂ = Vo₂/Do₂) or by the related variable (see below) venous oxygen saturation (SvO₂)—how much of the delivered oxygen is left over after the tissues consume oxygen.

In contrast to a highly variable “critical cardiac output,” many studies in many clinical states involving many different organs find a more stable and useful measurement reflecting tissue oxygenation to be the “critical oxygen extraction ratio,” ERo₂. Since ERo₂ = Vo₂/Do₂, when Do₂ decreases relative to Vo₂, ERo₂ increases. When Do₂ falls further (decreasing cardiac output, oxygen carrying capacity, or arterial saturation) and is inadequate to meet Vo₂ demand, ERo₂ exceeds a threshold that is identified by evidence of tissue hypoxia and anaerobic metabolism, including increasing lactate production and impaired organ function. This critical threshold is ERo₂. ERo₂ is approximately 0.7 in normal healthy whole animals (21, 22) and regionally is approximately 0.7 in skeletal muscle (23, 24), approximately 0.7 in gut (21, 25), approximately 0.7 in heart (26), and approximately 0.7 in brain (27, 28) (see Discussion of Disease States, below).

Direct cardiac output measurement is essential in assessing a number of cardiovascular disease states. However, when addressing the issue of inadequate tissue oxygenation a measure reflecting tissue oxygen extraction, ERo₂, may be more informative.
SvO_2 IS SIMPLY RELATED TO ERO_2

The Fick equation states that:

$$CO = \frac{VO_2}{(CaO_2 - CvO_2)}, \quad (Eq. 1)$$

where CaO_2 and CvO_2 are the oxygen contents of arterial and venous blood, respectively. Rearranging yields:

$$CO \times CaO_2 - VO_2 = CO \times CvO_2. \quad (Eq. 2)$$

Since $D_O_2 = CaO_2 \times CO$ this can be can be rewritten, after dividing both sides by D_O_2, as:

$$1 - ERO_2 = (CO \times CvO_2)/(CO \times CaO_2). \quad (Eq. 3)$$

Note that $CaO_2 = 1.34 \times Hgb \times SxO_2$, if dissolved oxygen is ignored. Cancelling common terms on the right hand side of Equation 2 and rearranging yields:

$$SvO_2 = (1 - ERO_2) \times SaO_2. \quad (Eq. 4)$$

In clinical practice SaO_2 is often kept quite constant and often greater than 0.9, so that:

$$SvO_2 \approx 1 - ERO_2. \quad (Eq. 5)$$

This simple relationship indicates that SvO_2 measurement is directly related to ERO_2 and can be used to help determine whether a patient or individual organs are close to $ERO2$-crit, where evidence of inadequate oxygen delivery and organ dysfunction occur.

TECHNICAL ISSUES

When Does SvO_2 Measurement Perform Well/Not Well?

When assessing the utility of any measurement it is important to consider the interpretation of the measurement in the face of measurement errors—related to a sensitivity analysis. For cardiac output measurement and SvO_2 measurement, this can be illustrated by considering the Fick equation. Examination of this relationship (Figure 1) suggests that when cardiac output is high, errors in cardiac output measurement result in only minor errors in estimates of SvO_2, which reflects adequacy of tissue oxygenation. However, when cardiac output is low the curve is steep (Figure 1), so that small measurement errors in cardiac output lead to large errors in estimates of adequacy of tissue oxygenation. In other words, when cardiac output is high (and generally not much of a clinical issue), cardiac output measurements are technically excellent. When cardiac output is low (and therefore a crucial clinical issue), cardiac output measurements are technically poor in reflecting tissue oxygenation. In contrast, when cardiac output is high, SvO_2 measurement error leads to large errors in Fick cardiac output estimates. When cardiac output is low, SvO_2 measurement error does not substantially impact the estimate of cardiac output. Thus, SvO_2 measurement performs poorly when it is clinically irrelevant (high cardiac output states), but technically performs well in clinically relevant situations in which oxygen delivery may be inadequate.

Is SvO_2 an Adequate Surrogate for SvO_2?

Important Limitations

Multiple investigators have compared true SvO_2, with SvO_3 measured in blood drawn from a thoracic central venous line (29–37). (Parenthetically, femoral venous blood is not mixed and not downstream of any vital organs and therefore it would be erroneous to use this value to interpret anything except oxygenation of the distal leg.) In general, a good but not perfect correlation is observed (38) (Figure 2A) with SvO_2 overestimating SvO_2 by 3 to 8% (39–41), a difference that decreases in low cardiac output states. Change in SvO_2 may correlate more closely with change in SvO_3 (36), although this remains imperfect (37, 39). More recently, Kopterides and coworkers (40) investigated the role of placement of the tip of the central venous catheter. When the tip was 15 cm away from the inlet of the right atrium, SvO_3 overestimated SvO_2 by 8%, consistent with previous reports. However, when the tip of the central venous catheter was advanced to the right atrium, SvO_3 now was an excellent surrogate for SvO_2, overestimating SvO_2 by 1% (Figure 2B). Thus, when care is taken in the placement of the central venous catheter (Figure 3), SvO_2 becomes a reasonable estimate of SvO_3 (36, 40).

Thus, SvO_2 is not SvO_3 (41), and the relationship between these two variables changes with catheter placement, between low flow and high flow states, and can clearly be influenced by relative changes in superior and inferior vena caval flow and coronary sinus flow. Thus, SvO_2 is only an approximation of SvO_3, and potential differences must be kept in mind when using and interpreting SvO_3 measurements. Figure 2A illustrates these differences which, for individual measurements, can be quite discrepant.

CLINICAL USE OF SvO_2

Correct clinical interpretation of SvO_2, or its properly measured SvO_3, surrogate, can be used to (1) estimate cardiac output, (2) better understand a patient’s physiologic state, (3) help resuscitate patients using validated treatment protocols and help identify patients at risk of weaning failure, (4) understand and treat arterial hypoxemia, and (5) rapidly estimate shunt fraction (venous admixture).

SvO_2 Can Be Used to Easily Estimate Cardiac Output Using the Fick Equation

The Fick equation can be simplified by ignoring the small contribution of dissolved oxygen and by indexing variables to body surface area. Then $CI = VO_2I/[Hgb \times 1.34 \times (Sao_2 - SvO_2)]$, where CI is cardiac index (L/min/m²), VO_2I is oxygen consumption index, and 1.34 ml O₂/gm Hgb is the amount of oxygen bound to hemoglobin and is a physical constant (theoretically 1.39 but, in practice closer to 1.34 due to a small fraction of bound to each gram of Hgb is approximately 120 to 140 ml O₂/uni2009 to 1.34 is about 100. Thus, the Fick equation can be used at the bedside using readily available measurements. Change in SvO_2 indicates a decrease in CI, and an increase in SvO_2 indicates an increase in CI.

When having a rough estimate of CI is helpful in understanding the physiologic state of the circulation, this simplified Fick equation can be used at the bedside using readily available measurements. Note that the a typical resting value of VO_2I in humans is approximately 120 to 140 ml O₂/min/m² and the amount of O₂ bound to each gram of Hgb is approximately 1.34 so that the ratio of typical VO_2I to 1.34 is about 100. Thus, the Fick equation can be simplified further to a working version for resting patients of:

$$CI = 100/[Hgb \times 1/(Sao_2 - SvO_2)](SI) \text{ Hgb units of grams/L or}$$

$$CI \approx 10/[Hgb \times 1/(Sao_2 - SvO_2)](Hgb \text{ units of grams/dL}) \quad (Eq. 6)$$

For example, if Hgb is 100 g/L, arterial pulse oximeter saturation is 0.95, and SvO_2 is 0.70, then CI $= 100/100 \times 1/(0.95 - \ldots$
Critical S

When arterial oxygen saturation is

ER

When arterial oxygen saturation is

ER

Oxygen consumption (Figure 4). The onset of anaerobic metab-

y

insight. When a technically correct value of cardiac output is

considered but, to be clear, this is not a measurement of cardiac

error than cardiac output in assessing adequacy of oxygen delivery and

tissue oxygenation.

The region of the Fick equation relationship where tissue oxygenation is

in this way can provide rapid and valuable clinical insight. Post hoc correction upward of ScvO₂ by approximately 5% could be considered but, to be clear, this is not a measurement of cardiac index; it is a “quick and dirty” approximation to aid clinical insight. When a technically correct value of cardiac output is required, then the above approximations are inappropriate (41) and direct measurements of VO₂ and ScvO₂ are required.

ScvO₂ Can Be Interpreted Using VO₂/DO₂ Relationships

What is a high ScvO₂ value and what is a low value? ScvO₂ gives information regarding the balance between oxygen delivery and oxygen consumption (Figure 4). The onset of anaerobic metabol-

ism is characterized by a critical oxygen extraction ratio, ERO₂crit. In whole animal studies, in individual organ studies, and in human studies, the critical oxygen extraction ratio is approximately 70% (21–28). While relatively constant in health, ERO₂crit decreases in a number of critical illnesses (42) that are characterized by an impaired ability of the tissues to extract oxygen; importantly including sepsis (22, 24, 25). Impaired ability of the tissues to extract oxygen may be due to the observed increased heterogeneity of microvascular and macrovascular blood flow, related shunting of oxygen past the tissues (24, 43–45), and impaired ability of cells and their mitochondria to utilize oxygen (46). When tissue oxygen extraction capability is impaired, as it is during sepsis, ERO₂crit can fall to 50% in animal studies (47) and in the human heart (48, 49). Since ScvO₂ = 1 – ER (when arterial oxygen saturation is ~ 100%), it follows that the critical ScvO₂ is approximately 30% in otherwise healthy individuals but can be 50% in patients who have severe sepsis or in other patients with impaired tissue oxygen extraction capability (Figure 4). In rare patients with extreme vasodilatory shock or following mitochondrial poisoning, cardiac output can be high and ScvO₂ may be very high (> 85%), yet lactate levels may be elevated and shock and organ dysfunction persist. Oxygen extraction capacity in these patients is clearly very poor—reflected by a very high ScvO₂ and a correspondingly very low ERO₂crit. These considerations lead to an understanding of different ScvO₂ values. ScvO₂ over 70% generally is adequate and normal. ScvO₂ less than 50% is low and, depending on tissue oxygen extraction capabilities, could be approaching values associated with ERO₂crit. In studying the critical oxygen delivery point in dying patients, we observed that patients cannot live for much more than a few minutes to an hour below this critical threshold (42). ScvO₂ less than 50% and certainly less than 40% should generally be carefully considered and acted upon. ScvO₂ values between 50% and 70% are somewhat low but, by themselves, do not lead to firm conclusions and must

0.70) = 1/0.25 = 4 L/min/m². If ScvO₂ drops to 0.45, then CI = 1/

0.5 = 2 L/min/m². Using approximations and the Fick equation in this way can provide rapid and valuable clinical insight. Post hoc correction upward of ScvO₂ by approximately 5% could be considered but, to be clear, this is not a measurement of cardiac index; it is a “quick and dirty” approximation to aid clinical insight. When a technically correct value of cardiac output is required, then the above approximations are inappropriate (41) and direct measurements of VO₂ and ScvO₂ are required.

ScvO₂ Can Be Interpreted Using VO₂/DO₂ Relationships

What is a high ScvO₂ value and what is a low value? ScvO₂ gives information regarding the balance between oxygen delivery and oxygen consumption (Figure 4). The onset of anaerobic metabol-

ism is characterized by a critical oxygen extraction ratio, ERO₂crit. In whole animal studies, in individual organ studies, and in human studies, the critical oxygen extraction ratio is approximately 70% (21–28). While relatively constant in health, ERO₂crit decreases in a number of critical illnesses (42) that are characterized by an impaired ability of the tissues to extract oxygen; importantly including sepsis (22, 24, 25). Impaired ability of the tissues to extract oxygen may be due to the observed increased heterogeneity of microvascular and macrovascular blood flow, related shunting of oxygen past the tissues (24, 43–45), and impaired ability of cells and their mitochondria to utilize oxygen (46). When tissue oxygen extraction capability is impaired, as it is during sepsis, ERO₂crit can fall to 50% in animal studies (47) and in the human heart (48, 49). Since ScvO₂ = 1 – ER (when arterial oxygen saturation is ~ 100%), it follows that the critical ScvO₂ is approximately 30% in otherwise healthy individuals but can be 50% in patients who have severe sepsis or in

other patients with impaired tissue oxygen extraction capability (Figure 4). In rare patients with extreme vasodilatory shock or following mitochondrial poisoning, cardiac output can be high and ScvO₂ may be very high (> 85%), yet lactate levels may be elevated and shock and organ dysfunction persist. Oxygen extraction capacity in these patients is clearly very poor—reflected by a very high ScvO₂ and a correspondingly very low ERO₂crit. These considerations lead to an understanding of different ScvO₂ values. ScvO₂ over 70% generally is adequate and normal. ScvO₂ less than 50% is low and, depending on tissue oxygen extraction capabilities, could be approaching values associated with ERO₂crit. In studying the critical oxygen delivery point in dying patients, we observed that patients cannot live for much more than a few minutes to an hour below this critical threshold (42). ScvO₂ less than 50% and certainly less than 40% should generally be carefully considered and acted upon. ScvO₂ values between 50% and 70% are somewhat low but, by themselves, do not lead to firm conclusions and must

Figure 1. The Fick equation relating ScvO₂ to cardiac output is plotted for VO₂ = 220 ml/min, Hgb = 90 g/L, and Sao₂ = 100%. Where the curve is relatively flat, small errors in ScvO₂ measurement are associated with large errors in the calculation of Fick cardiac output and its clinical interpretation. However, in this region of the Fick equation relationship, cardiac output is generous so that tissue oxygenation is generally not a major clinical issue. Where the curve is relatively steep the reverse is true. Small errors in cardiac output measurement result in substantial errors in interpretation of ScvO₂. Since ScvO₂ is directly related to tissue oxygenation (ScvO₂ = 1 − ERO₂) cardiac output measurement may not give clear guidance in assessing adequacy of tissue oxygenation. This is the region of the Fick equation relationship where tissue oxygenation is a major clinical issue. Therefore, when it counts, ScvO₂ is less subject to error than cardiac output in assessing adequacy of oxygen delivery and tissue oxygenation.

Figure 2. (A) Using data from a large number of patients in ARDSnet trials, Grissom and colleagues measured the relationship between ScvO₂ and VO₂. Scatter around the line of identity illustrates the difference between these two measurements (38). When ScvO₂ is greater than 70% (vertical dashed line), VO₂ is generally more than about 60%, although exceptions can occur (point in circle). When ScvO₂ is less than 50% (vertical dotted line), VO₂ is generally low, although exceptions can occur (point in square). (B) When ScvO₂ is measured in blood drawn from the right atrium, the relationship between ScvO₂ and VO₂ improves substantially (40).
be interpreted in the context of adequacy of tissue oxygenation. Is organ function OK? Should/can cardiac output or Hgb or Sao2 be increased? Should/can oxygen demand be reduced using sedation or paralysis? Excessively high Svo2 may indicate a high cardiac output but may also reflect very poor tissue oxygen extraction capacity. Consequently, very high and very low Svo2 are associated with increased mortality (14).

Svo2 has clinical utility in early goal directed therapy and in weaning protocols

Although the use of Svo2 and Svi2 to assess and manage patients is grounded in firm physiological principles, evidence that routine measurement of Svo2 affects or predicts outcomes is only emerging. Two clinical scenarios in which evidence of clinical utility of Svo2 has been reported are in early shock resuscitation protocols (16) and in weaning patients from mechanical ventilation (50). Confirmation is now being tested in clinical trials.

The Surviving Sepsis Campaign Guidelines (51) endorse the elements of early goal directed therapy (EGDT) (16) protocols for resuscitation of septic shock patients. Similar physiologically targeted rapid resuscitation approaches are helpful in other shock states. The initial publication by Rivers and colleagues (16) many years ago, plus many subsequent “before/after” reports, lend evidence to support these protocols. Multiple larges randomized controlled trials of EGDT and variants are now underway to more carefully test these concepts (18–20).

Svo2 plays a central role in EGDT and related protocols. The shared elements in all of these protocols are, first, that resuscitation should be performed in a timely manner—time is tissue. Second, volume resuscitation is a fundamental initial step and must be adequate. Third, resuscitation must achieve a reasonable mean arterial pressure so that a sufficient arterial pressure head is available to allow redistribution of the cardiac output to vital organs. Finally, after these first goals have been achieved, it is necessary to ask: is oxygen delivery adequate? In many EGDT protocols this issue is addressed by measuring Scvo2 or SvO2. However, it may also be reasonable to address the same question by measuring lactate clearance (15)—same question, slightly different approach. Assessment of organ function is also important when assessing adequacy of tissue oxygenation; for example, measurement of urine output is incorporated into EGDT. An Svo2 greater than 70% is the original EGDT target and, as a component of River’s EGDT (16), results in a substantial reduction in mortality with a number needed to treat to prevent one death (NNT) of approximately 6 (16). Thus, EGDT is a remarkably effective therapeutic approach and Svo2 plays the important role of testing the final crucial question of whether oxygen delivery is adequate.

Teixeira and coworkers have recently found that among a variety of clinical parameters, Svo2 was the best clinical predictor of weaning failure (50). Difficult-to-wean patients who failed a 2-hour spontaneous breathing trial were followed daily until they successfully completed the spontaneous breathing trial. Svo2 and a large number of standard ventilatory, blood gas, and hemodynamic variables were measured before and 30 minutes into the spontaneous breathing trial. Then patients were extubated. Only Svo2 (and consequently Ero2) differed significantly between patients with extubation success versus extubation failure. A decrease in Svo2 of more than 4.5% during the spontaneous breathing trial had a sensitivity of 88% and a specificity of 95% in predicting extubation failure. Validation of these results is required.

Svo2 impacts arterial oxygenation in the setting of shunt/venous admixture

In the setting of shunt lung disease (or equivalent venous admixture through V/Q mismatch), mixed venous oxygen saturation plays a major role in determining arterial oxygen saturation (Figure 5). The corollary of this observation is that, in this shunt setting, therapeutic maneuvers that increase mixed venous oxygen saturation will increase arterial oxygen saturation substantially (in proportion to the degree of shunt; i.e., big shunt, big Svo2 effect). Thus, when high FiO2, positive airway pressure, ventilator modes, nitric oxide, prone positioning, and other maneuvers are inadequate to achieve adequate arterial oxygenation, one more degree of therapeutic freedom is available—focus on Svo2. That is, when all lung-related approaches are exhausted in treating the hypoxemic patient, increasing Do2 (increasing cardiac output or oxygen-carrying capacity) and decreasing Vo2 (e.g., sedation, paralysis) will increase Svo2 and,
consequently, increase arterial oxygen saturation. Finally and more recently, SvO_2 can also be raised directly using extracorporeal lung support.

As a corollary, when an arterial desaturation event occurs in the setting of high shunt fraction it is important to consider, in addition to lung-related events, that a reduction in SvO_2 may contribute. A reduction in SvO_2 may occur rapidly as a result of a sudden drop in cardiac output (e.g., due to arrhythmia or other cardiac event), as a result of a decrease in venous return (e.g., due to positioning of a relatively hypovolemic patient, etc.), or as a result of an increase in oxygen consumption (e.g., due to muscle activity). Rapid spontaneous resolution of arterial oxygen saturation further increases the probability that the desaturation event was related to low SvO_2, since the above causes are often transient. This knowledge may help detect the cause and prevent recurrence. When a desaturation event occurs in the setting of low shunt fraction, then a contribution by SvO_2 is less likely and the desaturation event is more often lung-related. Mucous plug, aspiration, FiO_2 regulation, endotracheal tube patency, ventilator circuit malfunction, pneumothorax, and so on become more likely explanations.

This line of reasoning helps quickly diagnose and treat desaturation events, but depends upon a prior knowledge of shunt fraction. How can shunt fraction be often and easily estimated so that it is part of routine critical care practice?

SvO_2 Can Be Used to Quickly Estimate Shunt Fraction

The equation for shunt fraction is:

$$\text{Shunt fraction} = \frac{\text{QS}/\text{QT}}{1 - SvO_2} = \frac{(\text{CcO}_2 - \text{CaO}_2)}{(\text{CcO}_2 - \text{CvO}_2)}.$$

(Eq. 7)

where CcO_2 is the oxygen concentration in maximally saturated pulmonary end-capillary blood (i.e., $SvO_2 = 1$). Ignoring dissolved oxygen, this can be simplified to:

$$\text{Shunt fraction} = \frac{(1 - SvO_2)}{1 - SvO_2}.$$

For example, when pulse oximeter oxygen saturation is 90% and SvO_2 is 60%, the shunt fraction is $(1 - 0.9)/(1 - 0.6) = 25\%$, or when pulse oximeter oxygen saturation is 85% and SvO_2 is 70%, the shunt fraction is $(1 - 0.85)/(1 - 0.7) = 50\%$. With this simple equation in mind, bedside estimates of the clinical effect of diuresis, PEEP, and other treatment strategies on shunt fraction becomes very straightforward.

LIMITATIONS

In view of the above features, SvO_2 can be a valuable and readily accessible measure in managing critically ill patients where adequacy of tissue oxygenation is an issue. In this regard, SvO_2 is superior to cardiac output measurements and indeed, can be used to estimate cardiac output using the Fick equation. However, when the clinical issue is cardiac function, then other approaches such as echocardiography are far superior to SvO_2. The ability of SvO_2 measurements to estimate SvO_2 is imperfect and depends on catheter placement, patient anatomy, and
physiologic state. This should always be kept in mind when interpreting ScvO₂ measurements. When a true mixed venous oxygen saturation is essential, pulmonary artery catheter placement is required.

ScvO₂ and Svo₂ measurements should never be interpreted in isolation. Rather, clinical context must always be considered. For example, Svo₂ over 70% is generally a good indicator. Yet in the setting of extreme vasodilatory shock or following mitochondrial poisoning where organ function is poor and lactate is rising, an Svo₂ of 90% provides no comfort (14). In these readily apparent clinical contexts, a high Svo₂ suggests that tissue oxygen extraction capacity is severely impaired and/or regional tissue hypoxia (e.g., gut ischemia) is present.

Is it necessary to measure central venous oxygen saturation continuously using a fiberoptic catheter, or do intermittent measurements (e.g., blood samples) suffice? This depends on clinical context. In a setting in which clinically important minute-to-minute changes that would otherwise go undetected are possible (e.g., specific operating room scenarios), then continuous measurement may be helpful. Baulig and coworkers report significant differences between continuous fiberoptic measurements and intermittent measurements (52). This additional source of error must be considered when interpreting continuous measurements, and can be minimized by careful attention to drift and calibration issues of the continuous measurement instrument. In other settings in which changes over hours need to be identified, intermittent measurements are often sufficient. For intermediate time-course settings, such as rapid resuscitation of shock, either approach can be used successfully.

SUMMARY
When adequacy of tissue oxygenation is a key issue, the balance between oxygen delivery and oxygen consumption must be considered. Svo₂ reflects this balance directly while cardiac output does not. Therefore, Svo₂ may be a more informative measure. ERO₂crit, reflecting the onset of tissue hypoxia, is a well-understood and stable parameter. Since Svo₂ ≈ 1 – ERO₂, this knowledge can be used to understand critical Svo₂ values. Svo₂ plays a central role in EGDT protocols, which appear to greatly improve patient outcomes. In addition, Svo₂ is important in understanding arterial desaturation events; intimately linked to shunt fraction. Understanding the role of Svo₂ provides an additional (non-lung) degree of freedom when treating severe arterial hypoxemia. Measurements of Svo₂ are often readily available, since a thoracic central line is often needed as part of care in critically ill patients. Attention to placement of the tip of the central line near or at the right atrium increases the accuracy of Svo₂ in reflecting Svo₂. Thoughtful measurement and interpretation of Svo₂ can contribute substantially to successful patient management.

Author Disclosure: The author does not have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

References
17. Rivers E. Mixed vs central venous oxygen saturation may be not numerically equal, but both are still clinically useful. Chest 2006;129:507–508.
24. Humar MF, Phang PT, Friessen BP, Allard MF, Goddard CM, Walley KR. Heterogeneity of gut capillary transit times and impaired gut