Table of Contents

Laryngoscopy Strategy for First Pass Success ... 2

Chapter 1. Mask Ventilation, Rescue Ventilation Devices 5

Chapter 2. Laryngeal Anatomy ... 13

Chapter 3. Laryngoscope Lighting and Blade Design 20

Chapter 4. Ocularity and Biomechanics of Laryngoscopy 25

Chapter 5. Preparing for Laryngoscopy ... 27

Chapter 6. Curved Blade Laryngoscopy Technique 29

Chapter 7. Passing the Tube: Stylets and Introducers 44

Chapter 8. Paraglossal Straight Blade Laryngoscopy 51

Chapter 9. Pediatric Laryngoscopy ... 59

Chapter 10. Blind Nasal Intubation ... 61

Chapter 11. Causes and Recognition of Esophageal Intubation 63

Resources for Further Study ... 65

Practical Emergency Airway Management Algorithm 67
Breathing:
cords abducted

Speaking:
cords adducted

The larynx as seen with an Olympus ENF-P4 rhinolaryngoscope (olympusamerica.com, 800-848-9024).

1) Interarytenoid notch and posterior cartilages make up the most posterior and most caudal structures of the laryngeal inlet.

2) Fiberoptic instruments show a better view of the inner larynx than is typically seen at direct laryngoscopy.
The epiglottis is the physical and visual bridge from where laryngoscopy starts, the tongue, to the goal, the glottic opening. It is the most superior aspect of the laryngeal inlet. The next structures seen after the epiglottis will be the posterior cartilages and the interarytenoid notch. The glottic opening and vocal cords are more anterior inside the larynx.

1) The anterior neck dissection (top) is at the level of the hyoid bone. The tip of the blade is at the vallecula.

2) The pharyngo-epiglottic folds come down from the epiglottis.
After the epiglottis is identified the blade is repositioned toward the right side, allowing the tongue to fall toward the left side of the mouth.

1) Tongue control happens after epiglottis identification. A methodical midline advancement of the blade down the tongue is the predictable, reliable way to find the epiglottis.

2) Expert laryngoscopists always identify the epiglottis with initial blade insertion; novices move the tip of the laryngoscope in and out repeatedly, taking more time and moving the blade more.

3) Jogging the blade into proper position after finding the epiglottis is not difficult if minimal upward force is applied.

4) After the blade is properly seated in the vallecula, and after the tongue has been properly controlled, the force on the laryngoscope is increased to drive the tip of the blade fully into the vallecula and expose the larynx.

5) Blade insertion, epiglottoscopy, and tongue control happen almost simultaneously in actual practice.
The posterior portion of the glottic opening comes into view before the vocal cords, which are more anterior and deeper within the larynx.

1) The vocal cords have a distinctive white appearance. They are often poorly illuminated in curved blade laryngoscopy because of shadowing by the epiglottis.
Bimanual laryngoscopy – the laryngoscopist reaches around with the right hand, manipulating the larynx externally while directly observing the effect on laryngeal view. After the view has been optimized, an assistant maintains pressure at this location, freeing the laryngoscopist’s right hand to place the tube. Bimanual laryngoscopy is much more effective than Backward, Upward Rightward Pressure by someone else.